翻訳と辞書
Words near each other
・ HR 5405
・ HR 5553
・ HR 5955
・ HR 6135
・ HR 6384
・ HR 6806
・ HR 6875
・ HR 6902
・ HR 7578
・ HR 7703
・ HR 7722 b
・ HR 7722 c
・ HR 7955
・ HR 830
・ HR 8768
HR 8799
・ HR 8799 b
・ HR 8799 c
・ HR 8799 d
・ HR 8799 e
・ HR 8832
・ HR 8938 Cephei
・ HR 9038
・ HR Bradfords
・ HR Carinae
・ HR Delphini
・ HR Lyrae
・ HR Metric
・ HR Musik Limited
・ HR postcode area


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

HR 8799 : ウィキペディア英語版
HR 8799


HR 8799 is a young (~30 million-year-old) main-sequence star located 129 light years (39 parsecs) away from Earth in the constellation of Pegasus, with roughly 1.5 times the Sun's mass and 4.9 times its luminosity. It is part of a system that also contains a debris disk and at least four massive planets.〔 Those planets, along with Fomalhaut b, were the first extrasolar planets whose orbital motion was confirmed via direct imaging. The designation ''HR 8799'' is the star's identifier in the Bright Star Catalogue. The star is a Gamma Doradus variable: its luminosity changes because of non-radial pulsations of its surface. The star is also classified as a Lambda Boötis star, which means its surface layers are depleted in iron peak elements. This may be due to the accretion of metal-poor circumstellar gas. It is the only known star which is simultaneously a Gamma Doradus variable, a Lambda Boötis type, and a Vega-like star (a star with excess infrared emission caused by a circumstellar disk).
==Stellar properties==
The star HR 8799 is a member of the Lambda Boötis (λ Boo) class, a group of peculiar stars with an unusual lack of metals—elements heavier than hydrogen and helium—in their upper atmosphere. Because of this special status, stars like HR 8799 have a very complex spectral type. The luminosity profile of the Balmer lines in the star's spectrum, as well as the star's effective temperature, best match the typical properties of an F0 V star. However, the strength of the calcium II K absorption line and the other metallic lines are more like those of an A5 V star. The star's spectral type is therefore written as .〔
Age determination of this star shows some variation based on the method used. Statistically, for stars hosting a debris disk, the luminosity of this star suggests an age of about 20–150 million years. Comparison with stars having similar motion through space gives an age in the range 30–160 million years. Given the star's position on the Hertzsprung–Russell diagram of luminosity versus temperature, it has an estimated age in the range of 30–1,128 million years. λ Boötis stars like this are generally young, with a mean age of a billion years. More accurately, asteroseismology also suggests an age of approximately a billion years. However, this is disputed because it would make the planets become brown dwarfs to fit into the cooling models. Brown dwarfs would not be stable in such a configuration. The best accepted value for an age of HR8799 is 30 million years, consistent with being a member of the Columba Association co-moving group of stars.
Detailed analysis of the star's spectrum reveals that it has a slight overabundance of carbon and oxygen compared to the Sun (by approximately 30% and 10% respectively). While some Lambda Boötis stars have sulfur abundances similar to that of the Sun, this is not the case for HR 8799; the sulfur abundance is only around 35% of the solar level. The star is also poor in elements heavier than sodium: for example, the iron abundance is only 28% of the solar iron abundance. Asteroseismic observations of other pulsating Lambda Boötis stars suggest that the peculiar abundance patterns of these stars are confined to the surface only: the bulk composition is likely more normal. This may indicate that the observed element abundances are the result of the accretion of metal-poor gas from the environment around the star.
Astroseismic analysis using spectroscopic data indicates that the rotational inclination of the star is constrained to be greater than or approximately equal to 40°. This contrasts with the planets' orbital inclinations, which are in roughly the same plane at an angle of about 20° ± 10°. Hence, there may be an unexplained misalignment between the rotation of the star and the orbits of its planets. Observation of this star with the Chandra X-ray Observatory indicates that it has a weak level of magnetic activity, but the X-ray activity is much higher than that of an A-type star like Altair. This suggests that the internal structure of the star more closely resembles that of an F0 star. The temperature of the corona is about 3.0 million K.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「HR 8799」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.